Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 682
Filtrar
1.
Mol Biol Rep ; 51(1): 444, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520569

RESUMEN

2,4-D is a broadly used auxin herbicide. The presence of the 2,4-D synthetic auxin in the medium is imperative for long-term BY-2 tobacco suspension viability. The precise mechanism of this symbiosis of the suspension and the synthetic auxin remains unclear. Our goal was to study the hormonal regulation of the growth of the cell suspension; and to describe the experiments clarifying the interaction between the chosen growth regulators and phytohormones on the cellular level, specifically between the 2,4-D synthetic auxin and the native stress phytohormone - ethylene. This study examined the influence of low 2,4-D concentrations stimulating cell growth in vitro as well as the influence of high herbicide concentrations on the model tobacco BY-2 suspension. The culture took 6 days. Different parameters were evaluated, including the influence of different 2,4-D concentrations on the production of the phytohormone ethylene and its precursor 1-Aminocyclopropane-1-carboxylic acid (ACC) in the tobacco cells. The content of 2,4-D in the cells and the medium was established. The observations of the morphological changes showed that a heavy impregnation of the cell walls taking place depending on the concentration of 2,4-D. A dramatic increase in protective polysaccharides and a remodulation of the cell walls by the formation of a pectin shield in artificial conditions were expected and observed. At the same time, massive production of the stress phytohormone ethylene took place, and, because of that, plant mutagenicity, anomalous tumour-type proliferation growth, and the production of supercells were observed. The hypothesis of the protective shield is discussed.


Asunto(s)
Herbicidas , Herbicidas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Ácidos Indolacéticos , Etilenos , Ácido 2,4-Diclorofenoxiacético/farmacología , Regulación de la Expresión Génica de las Plantas
2.
Plant J ; 118(2): 295-303, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38361343

RESUMEN

Plant genome editing and propagation are important tools in crop breeding and production. Both rely heavily on the development of efficient in vitro plant regeneration systems. Two prominent regeneration systems that are widely employed in crop production are somatic embryogenesis (SE) and de novo shoot regeneration. In many of the protocols for SE or shoot regeneration, explants are treated with the synthetic auxin analog 2,4-dichlorophenoxyacetic acid (2,4-D), since natural auxins, such as indole-3-acetic acid (IAA) or 4-chloroindole-3-acetic acid (4-Cl-IAA), are less effective or even fail to induce regeneration. Based on previous reports that 2,4-D, compared to endogenous auxins, is not effectively exported from plant cells, we investigated whether efflux inhibition of endogenous auxins could convert these auxins into efficient inducers of SE in Arabidopsis immature zygotic embryos (IZEs). We show that natural auxins and synthetic analogs thereof become efficient inducers of SE when their efflux is transiently inhibited by co-application of the auxin transport inhibitor naphthylphthalamic acid (NPA). Moreover, IZEs of auxin efflux mutants pin2 or abcb1 abcb19 show enhanced SE efficiency when treated with IAA or efflux-inhibited IAA, confirming that auxin efflux reduces the efficiency of Arabidopsis SE. Importantly, in contrast to the 2,4-D system, where only 50-60% of the embryos converted to seedlings, all SEs induced by transport-inhibited natural auxins converted to seedlings. Efflux-inhibited IAA, like 2,4-D, also efficiently induced SE from carrot suspension cells, whereas IAA alone could not, and efflux-inhibited 4-Cl-IAA significantly improved de novo shoot regeneration in Brassica napus. Our data provides new insights into the action of 2,4-D as an efficient inducer of plant regeneration but also shows that replacing this synthetic auxin for efflux-inhibited natural auxin significantly improves different types of plant regeneration, leading to a more synchronized and homogenous development of the regenerated plants.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Reguladores del Crecimiento de las Plantas/farmacología , Fitomejoramiento , Ácidos Indolacéticos/farmacología , Plantas/genética , Ácido 2,4-Diclorofenoxiacético/farmacología
3.
PLoS One ; 19(1): e0292359, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38266002

RESUMEN

Callogenesis is one of the most powerful biotechnological approaches for in vitro secondary metabolite production and indirect organogenesis in Passiflora caerulea. Comprehensive knowledge of callogenesis and optimized protocol can be obtained by the application of a combination of machine learning (ML) and optimization algorithms. In the present investigation, the callogenesis responses (i.e., callogenesis rate and callus fresh weight) of P. caerulea were predicted based on different types and concentrations of plant growth regulators (PGRs) (i.e., 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP), 1-naphthaleneacetic acid (NAA), and indole-3-Butyric Acid (IBA)) as well as explant types (i.e., leaf, node, and internode) using multilayer perceptron (MLP). Moreover, the developed models were integrated into the genetic algorithm (GA) to optimize the concentration of PGRs and explant types for maximizing callogenesis responses. Furthermore, sensitivity analysis was conducted to assess the importance of each input variable on the callogenesis responses. The results showed that MLP had high predictive accuracy (R2 > 0.81) in both training and testing sets for modeling all studied parameters. Based on the results of the optimization process, the highest callogenesis rate (100%) would be obtained from the leaf explant cultured in the medium supplemented with 0.52 mg/L IBA plus 0.43 mg/L NAA plus 1.4 mg/L 2,4-D plus 0.2 mg/L BAP. The results of the sensitivity analysis showed the explant-dependent impact of the exogenous application of PGRs on callogenesis. Generally, the results showed that a combination of MLP and GA can display a forward-thinking aid to optimize and predict in vitro culture systems and consequentially cope with several challenges faced currently in Passiflora tissue culture.


Asunto(s)
Compuestos de Bencilo , Passiflora , Purinas , Algoritmos , Aprendizaje Automático , Ácido 2,4-Diclorofenoxiacético/farmacología
4.
J Biomol Struct Dyn ; 42(7): 3563-3567, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37194429

RESUMEN

Aspergillus favus (A. flavus) is a saprophytic fungus and a pathogen affecting several important foods and crops, including maize. A. flavus produces a toxic secondary metabolite called aflatoxin. Alpha-amylase (α-amylase), a hydrolytic enzyme produced by A. Flavus helps in the production of aflatoxin by hydrolysing the starch molecules in to simple sugars such as glucose and maltose. These simple sugars induce the production of aflatoxin. Inhibition of α-amylase has been proven as a potential way to reduce the production of aflatoxin. In the present study, we investigated the effect of selected carboxylic acid derivatives such as cinnamic acid (CA), 2, 4-dichlorophenoxyacetic acid (2,4-D), and 3-(4-hydroxyphenyl)-propionic acid (3,4-HPPA) on the fungal growth and for the α-amylase inhibitory activity. The binding potentials of these compounds with α-amylase have been confirmed by enzyme kinetics and isothermal titration calorimetry. Molecular docking and MD simulation studies were also performed to deduce the atomic level interaction between the protein and selected ligands. The results indicated that CA, 2,4-D and 3,4-HPPA can inhibit the fungal growth which could be partly due to the inhibition on fungal α-amylase activity.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/metabolismo , Simulación del Acoplamiento Molecular , alfa-Amilasas , Monosacáridos/metabolismo , Monosacáridos/farmacología , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/farmacología , Ácido 2,4-Diclorofenoxiacético/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacología
5.
J Environ Sci Health B ; 58(12): 726-743, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37904543

RESUMEN

Accidental herbicide drift onto neighboring crops, such as soybeans, can seriously harm non-target plants, affecting their growth and productivity. This study examined the impact of simulated drift from ten different herbicides (2,4-D, dicamba, glyphosate, saflufenacil, oxyfluorfen, hexazinone, diuron, diquat, nicosulfuron, and isoxaflutole) on young soybean plants. These herbicides were applied at three simulated drift levels (1/4, 1/16, and 1/32) equivalent to recommended commercial doses, and the resulting symptoms were carefully evaluated. Simulated drift caused distinctive symptoms, including chlorosis, twisting, necrosis, and growth abnormalities, varying depending on each herbicide's mode of action. Dicamba proved more toxic than 2,4-D, and symptom severity increased with drift proportion, with all herbicides causing over 30% injury at the 1/16 proportion. Notably, 2,4-D, dicamba, glyphosate, hexazinone, and diquat exceeded the half-maximal inhibitory concentration (IC50) value, significantly reducing total biomass. Dicamba consistently caused 50% injury at all proportions, while hexazinone, at the highest dose proportion, led to plant mortality. Dicamba also had biomass accumulation beyond the growth reduction (GR50), whereas hexazinone exhibited less than 10% accumulation due to its capacity to induce plant mortality. This study emphasizes the importance of understanding herbicide drift effects on non-target crops for more effective and safe weed management strategies.


Asunto(s)
Herbicidas , Herbicidas/toxicidad , Dicamba/toxicidad , Glycine max , Diquat/farmacología , Productos Agrícolas , Ácido 2,4-Diclorofenoxiacético/farmacología
6.
Planta ; 258(4): 75, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37668683

RESUMEN

MAIN CONCLUSION: Eight promoters were cloned, from which AC and G-box cis-elements were identified. PAP1 enhanced the promoter activity. 2,4-D reduced the anthocyanin biosynthesis via downregulating the expression of the PAP1 transgene. Artemisia annua is an effective antimalarial medicinal crop. We have established anthocyanin-producing red cell cultures from this plant with the overexpression of Production of Anthocyanin Pigment 1 (PAP1) encoding a R2R3MYB transcription factor. To understand the molecular mechanism by which PAP1 activated the entire anthocyanin pathway, we mined the genomic sequences of A. annua and obtained eight promoters of the anthocyanin pathway genes. Sequence analysis identified four types of AC cis-elements from six promoters, the MYB response elements (MRE) bound by PAP1. In addition, six promoters were determined to have at least one G-box cis-element. Eight promoters were cloned for activity analysis. Dual luciferase assays showed that PAP1 significantly enhanced the promoting activity of seven promoters, indicating that PAP1 turned on the biosynthesis of anthocyanins via the activation of these pathway gene expression. To understand how 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin, regulates the PAP1-activated anthocyanin biosynthesis, five different concentrations (0, 0.05, 0.5, 2.5, and 5 µM) were tested to characterize anthocyanin production and profiles. The resulting data showed that the concentrations tested decreased the fresh weight of callus growth, anthocyanin levels, and the production of anthocyanins per Petri dish. HPLC-qTOF-MS/MS-based profiling showed that these concentrations did not alter anthocyanin profiles. Real-time RT-PCR was completed to characterize the expression PAP1 and four representative pathway genes. The results showed that the five concentrations reduced the expression levels of the constitutive PAP1 transgene and three pathway genes significantly and eliminated the expression of the chalcone synthase gene either significantly or slightly. These data indicate that the constitutive PAP1 expression depends on gradients added in the medium. Based on these findings, the regulation of 2,4-D is discussed for anthocyanin engineering in red cells of A. annua.


Asunto(s)
Artemisia annua , Herbicidas , Antocianinas , Artemisia annua/genética , Espectrometría de Masas en Tándem , Ácido 2,4-Diclorofenoxiacético/farmacología
7.
Sci Rep ; 13(1): 13194, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580328

RESUMEN

Embryogenic tissue (ET) is important for genetic modification and plant re-generation. The proliferation ability and vigor of ET are crucial for plant propagation via somatic embryogenesis. In this study, ET was induced from mature zygotic embryos in blue spruce (Picea pungens Engelm.). There were significant differences in ET induction between two provenances, i.e. 78.8 ± 12.5% and 62.50 ± 12.8% respectively. Effects of 2,4-Dichlorophenoxy acetic acid (2,4-D), 6-Benzyl amino-purine (6-BA) and/or sucrose on ET proliferation and somatic embryo (SE) maturation were further investigated with four cell lines. The highest ET proliferation rate reached 1473.7 ± 556.0% biweekly. Concentrations of 2,4-D or 6-BA applied at tissue proliferation stage impacted SE maturation among the cell lines, whereas sucrose showed less effects. The highest rate, 408 ± 230 mature SEs/g FW, was achieved in SE maturation cultures. This research demonstrated that the culture conditions, i.e. the specific concentrations of 2,4-D and BA, at ET proliferation stage affected not only ET growth, but also the quality of ET for SE maturation. This study revealed the necessity and benefit in developing both the general and the genotype-specific protocols for efficient production of mature SEs, or somatic plants in blue spruce.


Asunto(s)
Picea , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Picea/genética , Sacarosa/farmacología , Sacarosa/metabolismo , Proliferación Celular , Ácido 2,4-Diclorofenoxiacético/farmacología , Semillas , Técnicas de Embriogénesis Somática de Plantas/métodos
8.
Plant J ; 116(5): 1355-1369, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37647363

RESUMEN

2,4-dichlorophenoxyacetic acid (2,4-D) is a synthetic analogue of the plant hormone auxin that is commonly used in many in vitro plant regeneration systems, such as somatic embryogenesis (SE). Its effectiveness in inducing SE, compared to the natural auxin indole-3-acetic acid (IAA), has been attributed to the stress triggered by this compound rather than its auxinic activity. However, this hypothesis has never been thoroughly tested. Here we used a library of forty 2,4-D analogues to test the structure-activity relationship with respect to the capacity to induce SE and auxinic activity in Arabidopsis thaliana. Four analogues induced SE as effectively as 2,4-D and 13 analogues induced SE but were less effective. Based on root growth inhibition and auxin response reporter expression, the 2,4-D analogues were classified into different groups, ranging from very active to not active auxin analogues. A halogen at the 4-position of the aromatic ring was important for auxinic activity, whereas a halogen at the 3-position resulted in reduced activity. Moreover, a small substitution at the carboxylate chain was tolerated, as was extending the carboxylate chain with an even number of carbons. The auxinic activity of most 2,4-D analogues was consistent with their simulated TIR1-Aux/IAA coreceptor binding characteristics. A strong correlation was observed between SE induction efficiency and auxinic activity, which is in line with our observation that 2,4-D-induced SE and stress both require TIR1/AFB auxin co-receptor function. Our data indicate that the stress-related effects triggered by 2,4-D and considered important for SE induction are downstream of auxin signalling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacología , Ácido 2,4-Diclorofenoxiacético/metabolismo , Relación Estructura-Actividad , Halógenos/metabolismo , Halógenos/farmacología , Regulación de la Expresión Génica de las Plantas
9.
Pest Manag Sci ; 79(10): 3581-3592, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37178347

RESUMEN

BACKGROUND: Resistance to 2,4-Dichlorophenoxyacetic acid (2,4-D) has been reported in several weed species since the 1950s; however, a biotype of Conyza sumatrensis showing a novel physiology of the rapid response minutes after herbicide application was reported in 2017. The objective of this research was to investigate the mechanisms of resistance and identify transcripts associated with the rapid physiological response of C. sumatrensis to 2,4-D herbicide. RESULTS: Differences were found in 2,4-D absorption between the resistant and susceptible biotypes. Herbicide translocation was reduced in the resistant biotype compared to the susceptible. In resistant plants 98.8% of [14 C] 2,4-D was found in the treated leaf, whereas ≈13% translocated to other plant parts in the susceptible biotype at 96 h after treatment. Resistant plants did not metabolize [14 C] 2,4-D and had only intact [14 C] 2,4-D at 96 h after application, whereas susceptible plants metabolized [14 C] 2,4-D into four detected metabolites, consistent with reversible conjugation metabolites found in other 2,4-D sensitive plant species. Pre-treatment with the cytochrome P450 inhibitor malathion did not enhance 2,4-D sensitivity in either biotype. Following treatment with 2,4-D, resistant plants showed increased expression of transcripts within plant defense response and hypersensitivity pathways, whereas both sensitive and resistant plants showed increased expression of auxin-response transcripts. CONCLUSION: Our results demonstrate that reduced 2,4-D translocation contributes to resistance in the C. sumatrensis biotype. The reduction in 2,4-D transport is likely to be a consequence of the rapid physiological response to 2,4-D in resistant C. sumatrensis. Resistant plants had increased expression of auxin-responsive transcripts, indicating that a target-site mechanism is unlikely. © 2023 Society of Chemical Industry.


Asunto(s)
Conyza , Herbicidas , Conyza/genética , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Herbicidas/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacología , Expresión Génica
10.
Pest Manag Sci ; 79(10): 3749-3756, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37198351

RESUMEN

BACKGROUND: Transgenic event DAS44406-6 (E3) makes soybeans that are herbicide [glyphosate (Gly), 2,4-dichlorophenoxyacetic acid (2,4-D) and glufosinate] and caterpillar resistant. The E3 soybean was commercially released for the 2021/2022 harvest in Brazil. We conducted this study to test whether Gly and 2,4-D applied alone and in a commercial mixture affect Asian soybean rust (ASR). Assays were conducted in detached leaves and in vivo, in a controlled environment using the herbicides Gly, 2,4-D and Gly + 2,4-D, and pathogen inoculation. Disease severity and spore production were evaluated. RESULTS: Only the herbicides Gly and Gly + 2,4-D inhibited ASR in detached leaves and in vivo. When applied preventively and curatively in vivo, these herbicides reduced the disease severity and spore production of the fungus. In vivo, inhibition of disease severity reached 87% for Gly + 2,4-D and 42% for Gly. A synergistic effect was observed with the commercial Gly + 2,4-D mixture. Application of 2,4-D alone in the in vivo assays did not reduce or increase disease severity. Gly and Gly + 2,4-D act residually in inhibiting the disease. Growing E3 soybeans may combine weed and caterpillar management benefits with ASR inhibition. CONCLUSION: Application of Gly and Gly + 2,4-D herbicides in resistant E3 soybean shows inhibitory activity for ASR. © 2023 Society of Chemical Industry.


Asunto(s)
Herbicidas , Phakopsora pachyrhizi , Herbicidas/farmacología , Glycine max/microbiología , Resistencia a los Herbicidas , Ácido 2,4-Diclorofenoxiacético/farmacología
11.
Pestic Biochem Physiol ; 191: 105371, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36963940

RESUMEN

Carduus acanthoides L. is mainly a range-land weed, but in the 2010s has begun to invade GM crop production systems in Córdoba (Argentina), where glyphosate and 2,4-D have been commonly applied. In 2020, C. acanthoides was found with multiple resistance to these two herbicides. In this study, the mechanisms that confer multiple resistance to glyphosate and 2,4-D, were characterized in one resistant (R) population of C. acanthoides in comparison to a susceptible (S) population. No differences in 14C-herbicide absorption and translocation were observed between R and S populations. In addition, 14C-glyphosate was well translocated to the shoots (∼30%) and roots (∼16%) in both R and S plants, while most of 14C-2,4-D remained restricted in the treated leaf. Glyphosate metabolism did not contribute to resistance of the R population; however, as corroborated by malathion pretreatment, the mechanism of resistance to 2,4-D was enhanced metabolism (63% of the herbicide) mediated by cytochrome P450 (Cyt-P450). No differences were found in baseline EPSPS activity, copy number, and/or gene expression between the R and S populations, but a Pro-106-Ser mutation in EPSPS was present in the R population. Multiple resistances in the R population of C. acanthoides from Argentina were governed by target site resistance (a Pro-106 mutation for glyphosate) and non-target site resistance (Cyt-P450-based metabolic resistance for 2,4-D) mechanisms. This is the first case of resistance to glyphosate and 2,4-D confirmed for this weed in the world.


Asunto(s)
Carduus , Herbicidas , Carduus/metabolismo , Resistencia a los Herbicidas/genética , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Herbicidas/farmacología , Ácido 2,4-Diclorofenoxiacético/farmacología , Glifosato
12.
Pest Manag Sci ; 79(4): 1528-1537, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36527683

RESUMEN

BACKGROUND: We have previously demonstrated that an aldo-keto reductase (AKR) from Echinochloa colona (EcAKR4-1) can metabolize glyphosate and confers glyphosate resistance. This study aims to investigate if the EcAKR4-1 orthologs from Lolium rigidum also play a role in glyphosate resistance in non-target-site based, glyphosate-resistant (R) L. rigidum populations from Western Australia. RESULTS: The full-length L. rigidum AKR gene (LrAKR4C10) orthologous to EcAKR4-1, together with a distinct LrAKR1, were cloned from plants of a glyphosate-susceptible (S) (VLR1) and three glyphosate R L. rigidum populations (WALR50, WALR60 and WALR70). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) results showed that basal expression levels of the two LrAKR genes did not differ between the R and S populations, but their expression was significantly induced by glyphosate (up to 4.3-fold) or 2,4-D treatment (up to 3.4-fold) in R populations. Escherichia coli cells transformed respectively with LrAKR4C10 and LrAKR1 were more tolerant to glyphosate. Rice (Oryza sativa) seedlings overexpressing each of the two LrAKR gene survived glyphosate rates that were lethal to the green fluorescence protein (GFP) control plants. Structural modeling predicts a similar way of glyphosate binding and detoxification by LrAKR4C10 and EcAKR4-1, but an alternative way of glyphosate binding by LrAKR1. Relatively lower capacity of the two LrAKRs in conferring glyphosate resistance than the known EcAKR4-1 was discussed in relation to structural interaction. CONCLUSION: Glyphosate-induced higher expression of the two LrAKR genes in L. rigidum populations contributes to a moderate level of glyphosate resistance likely through enhanced glyphosate metabolism. The herbicide 2,4-D can also induce the LrAKR expression, indicating the potential antagonistic effect of 2,4-D to glyphosate. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Herbicidas , Lolium , Aldo-Ceto Reductasas/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Ácido 2,4-Diclorofenoxiacético/farmacología , Glifosato
13.
Plant J ; 113(1): 7-22, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36345646

RESUMEN

Somatic embryogenesis (SE), or embryo development from in vitro cultured vegetative explants, can be induced in Arabidopsis by the synthetic auxin 2,4-dichlorophenoxyacetic acid (2,4-D) or by overexpression of specific transcription factors, such as AT-HOOK MOTIF NUCLEAR LOCALIZED 15 (AHL15). Here, we explored the role of endogenous auxin [indole-3-acetic acid (IAA)] during 2,4-D and AHL15-induced SE. Using the pWOX2:NLS-YFP reporter, we identified three distinct developmental stages for 2,4-D and AHL15-induced SE in Arabidopsis, with these being (i) acquisition of embryo identity; (ii) formation of pro-embryos; and (iii) somatic embryo patterning and development. The acquisition of embryo identity coincided with enhanced expression of the indole-3-pyruvic acid auxin biosynthesis YUCCA genes, resulting in an enhanced pDR5:GFP-reported auxin response in the embryo-forming tissues. Chemical inhibition of the indole-3-pyruvic acid pathway did not affect the acquisition of embryo identity, but significantly reduced or completely inhibited the formation of pro-embryos. Co-application of IAA with auxin biosynthesis inhibitors in the AHL15-induced SE system rescued differentiated somatic embryo formation, confirming that increased IAA levels are important during the last two stages of SE. Our analyses also showed that polar auxin transport, with AUXIN/LIKE-AUX influx and PIN-FORMED1 efflux carriers as important drivers, is required for the transition of embryonic cells to proembryos and, later, for correct cell fate specification and differentiation. Taken together, our results indicate that endogenous IAA biosynthesis and its polar transport are not required for the acquisition of embryo identity, but rather to maintain embryonic cell identity and for the formation of multicellular proembryos and their development into histodifferentiated embryos.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Desarrollo Embrionario , Ácido 2,4-Diclorofenoxiacético/farmacología , Ácido 2,4-Diclorofenoxiacético/metabolismo
14.
Sci Rep ; 12(1): 21822, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528649

RESUMEN

In this study, the inheritance of 2,4-D resistance in a multiple herbicide-resistant Palmer amaranth (KCTR) was investigated. Direct and reciprocal crosses were performed using 2,4-D-resistant KCTR and susceptible KSS plants to generate F1 progenies. 2,4-D dose-response assays were conducted to evaluate the response of progenies from each F1 family along with KCTR and KSS plants in controlled environmental growth chambers. Additionally, 2,4-D-resistant male and female plants from each of the F1 families were used in pairwise crosses to generate pseudo-F2 families. Segregation (resistance or susceptibility) of progenies from the F2 families in response to a discriminatory rate of 2,4-D (i.e., 560 g ae ha-1) was evaluated. Dose-response analysis of F1 progenies derived from direct and reciprocal crosses suggested that the 2,4-D resistance in KCTR is a nuclear trait. Chi-square analyses of F2 segregation data implied that 2,4-D resistance in KCTR is controlled by multiple gene(s). Overall, our data suggest that the 2,4-D resistance in KCTR Palmer amaranth is a nuclear inherited trait controlled by multiple genes. Such resistance can spread both via pollen or seed-mediated gene flow. In future, efforts will be directed towards identifying genes mediating 2,4-D resistance in KCTR population.


Asunto(s)
Amaranthus , Herbicidas , Humanos , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Fenoxiacetatos , Ácido 2,4-Diclorofenoxiacético/farmacología
15.
Pestic Biochem Physiol ; 188: 105226, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36464346

RESUMEN

Multiple resistance mechanisms to ALS inhibitors and auxin mimics in two Papaver rhoeas populations were investigated in wheat fields from Portugal. Dose-response trials, also with malathion (a cytochrome P450 inhibitor), cross-resistance patterns for ALS inhibitors and auxin mimics, alternative herbicides tests, 2,4-D and tribenuron-methyl absorption, translocation and metabolism experiments, together with ALS activity, gene sequencing and enzyme modelling and ligand docking were carried out. Results revealed two different resistant profiles: one population (R1) multiple resistant to tribenuron-methyl and 2,4-D, the second (R2) only resistant to 2,4-D. In R1, several target-site mutations in Pro197 and enhanced metabolism (cytochrome P450-mediated) were responsible of tribenuron-methyl resistance. For 2,4-D, reduced transport was observed in both populations, while cytochrome P450-mediated metabolism was also present in R1 population. Moreover, this is the first P. rhoeas population with enhanced tribenuron-methyl metabolism. This study reports the first case for P. rhoeas of the amino acid substitution Pro197Phe due to a double nucleotide change. This double mutation could cause reduced enzyme sensitivity to most ALS inhibitors according to protein modelling and ligand docking. In addition, this study reports a P. rhoeas population resistant to 2,4-D, apparently, with reduced transport as the sole resistance mechanism.


Asunto(s)
Resistencia a los Herbicidas , Papaver , Resistencia a los Herbicidas/genética , Ácidos Indolacéticos , Ligandos , Mutación , Ácido 2,4-Diclorofenoxiacético/farmacología
16.
J Agric Food Chem ; 70(49): 15380-15389, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36453610

RESUMEN

A 2,4-dichlorophenoxyactic acid (2,4-D)-resistant population of Amaranthus tuberculatus (common waterhemp) from Nebraska, USA, was previously found to have rapid metabolic detoxification of the synthetic auxin herbicide 2,4-D. We purified the main 2,4-D metabolites from resistant and susceptible plants, solved their structures by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS), and synthesized the metabolites to determine their in planta toxicity. Susceptible plants conjugated 2,4-D to aspartate to form 2,4-D-aspartic acid (2,4-D-Asp), while resistant plants had a unique metabolic profile where 2,4-D was hydroxylated into 5-OH-2,4-D, followed by conjugation into a sugar metabolite (2,4-D-5-O-d-glucopyranoside) and subsequent malonylation into 2,4-D-(6'-O-malonyl)-5-O-d-glucopyranoside. Toxicological studies on waterhemp and Arabidopsis thaliana confirmed that the hydroxylated metabolite lost its auxinic action and toxicity. In contrast, the 2,4-D-Asp metabolite found in susceptible plants retained some auxinic action and toxicity. These results demonstrate that 2,4-D-resistant A. tuberculatus evolved novel detoxification reactions not present in susceptible plants to rapidly metabolize 2,4-D, potentially mediated by cytochrome P450 enzymes that perform the initial 5-hydroxylation reaction. This novel mechanism is more efficient to detoxify 2,4-D and produces metabolites with lower toxicity compared to the aspartic acid conjugation found in susceptible waterhemp.


Asunto(s)
Amaranthus , Herbicidas , Amaranthus/metabolismo , Resistencia a los Herbicidas , Herbicidas/farmacología , Herbicidas/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacología , Ácido 2,4-Diclorofenoxiacético/metabolismo
17.
J Phys Chem B ; 126(41): 8140-8154, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36205931

RESUMEN

Antibiotic resistance is a major global health concern. The increased use of herbicides may lead to multiple antibiotic resistance in bacteria. Conventional techniques for diagnosing antibiotic resistance are laborious, time-intensive, expensive, and lack information about antibiotic susceptibility. On the other hand, Raman spectroscopy is a rapid, label-free, noninvasive alternative to traditional techniques to detect antibiotic resistance. In this study, two popular herbicides 2,4-dichlorophenoxy acetic acid (2,4-D) and N-(phosphonomethyl)glycine (glyphosate) were used to study their effects on the emergence of antibiotic resistance. The Escherichia coli wild-type (WT) MG1655 strain and two isogenic mutants, Δlon and ΔacrB, were used together with Raman spectroscopy. The WT E. coli is sensitive to antibiotics, but exposure to both herbicides induces antibiotic resistance. Using an excitation wavelength of 785 nm, the intensity ratios (e.g., I740/I785, I740/I1003, I1480/I1445, I2934/I2868, and I2934/I2845) were identified as biomarkers to study the induction of antibiotic resistance in bacteria but not NaCl-mediated stress. Using an excitation wavelength of 633 nm, the peak intensity at 740 cm-1 assigned to cytochrome bd decreases under antibiotic stress but increases upon exposure to both herbicides and antibiotics, indicating the development of resistance. Thus, this study can be applied to monitor antibiotic resistance using Raman spectroscopy.


Asunto(s)
Escherichia coli , Herbicidas , Herbicidas/farmacología , Espectrometría Raman , Ácido Acético , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Ácido 2,4-Diclorofenoxiacético/farmacología , Citocromos , Glifosato
18.
PLoS One ; 17(10): e0274945, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36201477

RESUMEN

The occurrence of freezing stress around herbicides application is one of the most important factors influencing their performance. This experiment was performed to evaluate the efficacy of clodinafop-propargyl and 2,4-D plus MCPA (2,4-Dichlorophenoxyacetic acid plus 2-methyl-4-chlorophenoxyacetic acid), the most important herbicides used in wheat fields in Iran, under the influence of a freezing treatment (-4°C). Wheat and its two common weeds, winter wild oat (Avena ludoviciana Durieu) and turnipweed [Rapistrum rugosum (L.) All.], were exposed to the freezing treatment for three nights from 7:00 P.M. to 5:00 A.M. before and after herbicide application, and their response was compared with plants that did not grow under freezing stress. Under no freezing (NF) and freezing after spray (FAS) conditions, winter wild oat was completely controlled with the recommended dose of clodinafop-propargyl (64 g ai ha-1; hereafter g ha-1). However, the survival percentage of winter wild oat in the freezing before spray (FBS) of clodinafop-propargyl 64 g ha-1 was 7%, and it was completely controlled with twice the recommended dose (128 g ha-1). Under NF conditions and FAS treatment, turnipweed was completely controlled with twice the recommended dose of 2,4-D plus MCPA (2025 g ae ha-1; hereafter g ha-1), while there was no complete control under recommended rate. However, in the FBS treatment, the survival of turnipweed was 7% under double dose. The LD50 (dose required to control 50% of individuals in the population) and GR50 (dose causing 50% growth reduction of plants) rankings were NF

Asunto(s)
Ácido 2-Metil-4-clorofenoxiacético , Brassicaceae , Herbicidas , Ácido 2,4-Diclorofenoxiacético/farmacología , Avena , Herbicidas/farmacología , Humanos , Malezas , Propionatos , Piridinas , Triticum
19.
J Agric Food Chem ; 70(40): 12796-12806, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36135711

RESUMEN

Frequent and improper use of herbicides disrupts a plant's metabolism, causing oxidative stress that degrades crop quality. However, few studies have examined the inhibitory effects of herbicides on plant growth and defense mechanisms in terms of their impact on soil quality and crop rhizosphere. Therefore, the current study investigated the detrimental impacts of six typical and multilevel herbicides on the microbial community and signal molecules in the soil as well as on the levels of hormones and secondary metabolites in wheat seedlings. Interestingly, bensulfuron-methyl, terbutylazine (TBA), and 2,4-D butylate significantly induced oxidative damage while reducing the number of phytohormones (salicylic acid and jasmonic acid) and secondary metabolites (tricin, quercetin, and caffeic acid) in the roots and leaves compared with the controls, isoproturon, fenoxaprop-p-ethyl, and pretilachlor. At twice the recommended levels (2×), they also decreased the microbial α diversity and, in particular, the abundance of Gammaproteobacteria, Alphaproteobacteria, Actinobacteria, Bacteroidia, Verrucomicrobia, Bacilli, Acidimicrobiia, Deltaproteobacteria, and Gemmatimonadetes by disrupting the level of enzymes (e.g., urease and sucrase) and metabolites (indole-3-acetic acid, salicylic acid, apigenin, 4-hydroxybenzoic acid, DIMBOA, and melatonin) in the rhizosphere soil. Overall, significant exposure to herbicides may inhibit wheat growth by disturbing the microbial composition in the rhizosphere soil and the distribution of secondary metabolites in wheat seedlings.


Asunto(s)
Herbicidas , Melatonina , Ácido 2,4-Diclorofenoxiacético/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacología , Apigenina/farmacología , Herbicidas/metabolismo , Herbicidas/farmacología , Melatonina/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/metabolismo , Quercetina/metabolismo , Rizosfera , Ácido Salicílico/metabolismo , Metabolismo Secundario , Plantones/metabolismo , Suelo , Microbiología del Suelo , Sacarasa/metabolismo , Tiocarbamatos , Triazinas , Triticum/metabolismo , Ureasa/metabolismo
20.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955725

RESUMEN

The complexity of auxin signaling is partially due to multiple auxin receptors that trigger differential signaling. To obtain insight into the subcellular localization of auxin-binding sites, we used fluorescent auxin analogs that can undergo transport but do not deploy auxin signaling. Using fluorescent probes for different subcellular compartments, we can show that the fluorescent analog of 1-naphthaleneacetic acid (NAA) associates with the endoplasmic reticulum (ER) and tonoplast, while the fluorescent analog of indole acetic acid (IAA) binds to the ER. The binding of the fluorescent NAA analog to the ER can be outcompeted by unlabeled NAA, which allows us to estimate the affinity of NAA for this binding site to be around 1 µM. The non-transportable auxin 2,4-dichlorophenoxyacetic acid (2,4-D) interferes with the binding site for the fluorescent NAA analog at the tonoplast but not with the binding site for the fluorescent IAA analog at the ER. We integrate these data into a working model, where the tonoplast hosts a binding site with a high affinity for 2,4-D, while the ER hosts a binding site with high affinity for NAA. Thus, the differential subcellular localization of binding sites reflects the differential signaling in response to these artificial auxins.


Asunto(s)
Señales (Psicología) , Ácidos Indolacéticos , Ácido 2,4-Diclorofenoxiacético/farmacología , Sitios de Unión , Ácidos Indolacéticos/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA